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A Variational Analysis of Anisotropic,
Inhomogeneous Dielectric Waveguides

WENG CHO CHEW, SENIOR MEMBER, IEEE, AND MUHAMMAD A. NASIR

Abstract —We derive a variational formulation for anisotropic, dielectric
waveguides using only the (E,, E,) or only the (1., H,) components of the
electromagnetic field. We show that the (E,, E,) formulation is completely
equivalent to the (H,, H,) formulation. In fact, they are the transpose
problems of each other. Given the variational formulation, one can derive
the finite element solution quite easily. We also show how to derive a
variational expression where the natural boundary conditions are incorpo-
rated as an optimal solution of the variational expression. We illustrate our
theory with a simple implementation of a finite element solution. Our
solutions agree with previous results, and there is no occurrence of
spurious modes. Furthermore, our formulation allows the easy inclusion of
loss and frequency dispersion in the i and €.

I. INTRODUCTION

’I' ‘HERE HAVE been numerous papers published on
the analysis of dielectric waveguides due to their
growing importance in integrated optics and millimeter
waves. Because of the complexity of the structure, numeri-
cal methods [1]-[15], such as the finite element method,
are popular for solving this class of problems. In the finite
element method, there is always an associated variational
expression. Many different variational formulations have
been introduced to derive the guided modes of a dielectric
waveguide. Some of these formulations produce spurious
modes [1]-[6], [8], which are not the physical modes of the
dielectric waveguide. The spurious modes are usually ob-
served with the (E,, H,) formulation where only the z
components of the electromagnetic field are kept as un-
knowns [1], [2], [6], [8], or they are observed in a formula-
tion where the v-H =0 condition is not imposed [4], [5].

Recently, several papers have been published in which
the (H,, H,) formulation is advocated [11]-[13]. The au-
thors showed that with the use of such a formulation, the
spurious modes disappear. Even more recently, some
workers have suggested using both (E,, E,) and (H,, H,)
formulations to remove the spurious modes [14].

In all of the above formulations, the finite element
method was used to solve the pertinent equations. Hence,
one important consideration is the minimization of re-
quired computer memory. Therefore, it is most expedient
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to formulate the problem with a minimum number of the
components of the electromagnetic fields. Some formula-
tions use three components of the H field, and the un-
knowns for all three components of the H field have to be
stored [4], [5], [12]. In other formulations, the unknowns
for all four components of the fields, (H,, H ,) and
(E,, E,), have to be stored [14].

In this paper, we will use either the (E,, E,) only or the
(H,, H)) only for the formulation of anisotropic, inhomo-
geneous waveguides. Contrary to popular belief, we show
that the (E,, E,) formulation is as good as the (H,, H,)
formulation. By properly defining the differential equa-
tions and the transpose problems [16], we show that the
(E,, E)) and (H,, H,) formulations are completely equiva-
lent to each other. Su [13] suggested that the (E,, E))
formulation was inherently less accurate than the (H,, H,)
formulation. However, it can be shown that for the
isotropic case, if the same basis set is used for the expan-
sion functions and the testing functions, our (H,, H))
formulation is similar to Su’s; hence, there is no reason to
prefer the (H,, H,) formulation over the (E,, E,) formula-
tion.

In all the formulations in which the spurious modes do
not occur, either the v-D = 0 or the v-B = 0 condition is
imposed. We believe that these conditions remove the
possible accumulation of fictitious charges in the finite
element approximation. These fictitious charges, which can
store energy, can give rise to extraneous guided modes.

We will first derive the pertinent equations involving
either the (E,, E,) or the (H,, H,) for an anisotropic
waveguide with reflection symmetry {17]. Assuming that
the field has e’*:* dependence, our k2 appears explicitly as
the desired eigenvalue in the eigenequation. As opposed to
formulations in which k2 or the frequency appears explic-
itly as the desired eigenvalue [1], [4], [6], [8], [12], our
formulation makes it possible to include loss and fre-
quency dispersion.

After having derived the differential equations, we de-
fine their transpose problems [16] appropriately. Then, we
derive the variational expression corresponding to the dif-
ferential equations. We also discuss how the natural
boundary conditions can be imposed in such a formula-
tion. Finally, we show the numerical implementation of
such a theory.
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Fig. 1. Anisotropic, dielectric waveguide to be analyzed.

II. DERIVATION OF THE DIFFERENTIAL EQUATIONS

In applying the finite element method, we have to first
derive a variational expression. Before we do that, we need
to derive the differential equation governing the field.
Once the differential equation is derived, we can derive the
variational expression quite easily once we identify the
transpose problem (e.g., see [16] and [18]). In order to
reduce the number of unknowns required, we reduce the
differential equation to an equation involving (E,, E,)
alone for the E field. The differential equation governing
(H,, H,) can be derived via the duality principle.

The eleciric field in an inhomogeneous, anisotropic
waveguide satisfies the vector wave equation

v Xp v XE(r)— % -E(r)=0.

(1)

We will assume that

0 p.. 0 .

are functions of position and that p, and €, are 2X2
tensors. In this manner, the geometry in Fig. 1 has reflec-
tion symmetry about the z axis; i.e., a mode propagating
in the + z direction is degenerate with a mode propagating
in the — z direction [17]. Equation (1) has three compo-
nents of the electric field. To reduce the number of electric
field components, we next proceed to separate the trans-
verse and longitudinal components of (1). We assume that

(2)
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the field has e’*-* dependence so that 9 /3, = ik_. Defining
(3)

where the subscript s denotes a vector transverse to z, the
transverse components of (1) become

vV =V, + Zik, E=E +E,

where we have defined 1:/S = ;:fl. We can remove £, in (4)
using the v-D = 0 condition, from which we deduce that

— 5

ike,, k ()
We have defined k=€ ! in the above. Consequently, (4)
can be reduced to an equation involving only E_, viz.,

V. X0V, XE +2X72 XV (x, v, ¢ E,)
—~ % E,— k¥ Xy -2XE,=0. (6)

The above is an eigenequation for k2. The dependence
on k? implies that e*'** modes are degenerate. This
would not have been possible without assuming the form
of i and € in (2). In (6), k2 multiplies a rather compli-
cated expression. We can premultiply (6) by u-ZX to
arrive at

B 2XV X0V, XE, ~£XVk N, ¢ E,
— &, EXEqE +k%2XE=0. (7)

Invoking the duality principle [18], we arrive at the equa-
tion for the transverse magnetic field:

Es’f X vs X Kzzvs X Hs —zX vsvzzvs.ﬁs'Hs

—we EXp o H +K2EXH, =0, (8)

Equations (7) and (8) are very dissimilar in appearance.
However, we shall show next that they are related via the
definition of transpose operators [16].

I11.

Equation (7) is a differential equation of the form

THE TRANSPOSE PROBLEMS

P-E +k*B-E,=0

©)

where ., and % are linear operators. Defining the inner
product (A4, B))= [¢dSA-B, where S is the whole
cross-sectional area of the waveguide (see Fig. 1(b)), the
transpose operator! of % is an operator ¥’ such that
(A, L-E)=(E, ¥"A4,). An operator is symmetric if
L'= . The operator £, in this case is not symmetric
because

<As’$e.Es> #:<Es’$e'As>' (10)

'We use the term transpose rather than adjoint because, to be strictly
correct, the term adjomnt is used only when we define the inner product as
(A%, B> [16], [20].

s s
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We can prove this readily because

<A57 geEs> = [SdSAs'nlI"'s"‘f X Vs X szvs X Es

deA XV K,V e, E,

~ o [dSA i, EXECE
S

- (11)

Using integration by parts, or the appropriate vector
identities, the above becomes

s

<As7 ge.Es> == / devs X Esyzzvs‘ﬁts'A
S

+/dSz“-v X Ak _.-€-E
S 5 zz¥ s s s

— [ dSz-(&E
S

A ﬁfy'Asszf'vs X Ex

—|dit-Ax Ak v, e E,. (12)
C

If we think of A, as a magnetic field, the last terms
involving line integrals vanish if we have a PEC (perfect
electric conductor) or PMC (perfect magnetic conductor)
at C or if we assume C is at infinity. Then,

8

<As’ "?e'Es> = f devs X Esvzzvs'ﬁts'A
S

S‘ eS-ES

+de2-VS X Ak, ¥
i ;

—o? [ ds2-(&-E)x (i 4,). (122)
s
Clearly, (10) holds true from the above expression.
Similarly, (8) is of the form
ZH,+ k2B -H, =0.
By the same token,
<Cs7 "?h'Hs> * <Hs’ "?h' Cs> (14)

In other words, %, is not a symmetric operator. More
specifically,

(13)

<CS, gh.HS> == f dSé\.vS X HS'CZZVS. €:.{!. CS
S ‘
+ [ dszv, X Cr, v, B, H,
S
- o* [ dsz- (i, H,)x (E-C,)
S

+ f difi-é-Cx,,2-v, % H,
C

- [dizAxCr v, i H,.  (15)
C

Again the line integrals vanish if we assume that C is a
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PEC or PMC and that C, is an electric field, or that C is
at infinity. Then,

(C.. &y HYy=~ [dSEv, X Hy, v, &,
S

+ / dSévs X Csszvs'ﬁs'H
S

—o* [ dsz-(i H,) % (E-C,). (15a)
S

Clearly, (14) holds true from the above expression.

In (12a) and (15a), %, and %, are functions of fi and
€. By comparing (12a) and (15a) and letting 4 = H, in
(12a) and C, = E_ in (15a), we notice that

(H,, Z.(5.€) E,)y=(E.~ 2, (. ¢)-H,). (16)
Therefore, — ,?h(,u,c) is the transpose operator of
Z,(1,€). If the medium is reciprocal, then p'=p and
€' =¢. In this case, —.%, is the transpose operator of .Z,
from the same medium. However, in general, we have

(7.5 = 2,(7.7). (17)

In other words, the transpose of the operator —.%, in
medium (i1, €) is the operator &, in medium (I, €").

It is easy to show that the operator % in (9) and (13)
satisfies

(4,B-E))=(E, —&-A). (18)

Therefore,

B =—a. (19)

The above derivation establishes the transpose problems
of (9) and (13), respectively. Given (9), its transpose prob-
lem exists, and can be associated with a physical problem.
Hence, given

LR, €)E,+k>B-E =0 (20)
the transpose problem is
LR, €)-El+ k2B E! =0. (21)

Using (17) and (19), the transpose problem is the same as
&L, (#',&)-H + k2% -H,=0. (22)

Hence, the transpose solution, E!, is H,, which is the
transverse magnetic field SO]u£iOI_1 of a medium with the
electromagnetic property of (p’,¢’). From this point on-
ward, we use the tilde (-) to denote_ that H is the mag-
netic field solution with the medium p’, €', If the medium is
reciprocal, g’ =g and €’ =g, the transpose solution is just
the transverse magnetic field solution of the same medium,
that is, H H,. Similarly, we can establish the transpose
problem and the solution associated with (13). A similar
result could be obtained if we use (4*, B) as our inner
products [16], [18], [20]. In this case, the term transpose
operators will be replaced by adjoint operators. Equations
(9) and (13) can be proved to be non-self-adjoint.
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IV. VARIATIONAL PRINCIPLE

Given a nonsymmetric eigenequation (20) and its trans-
pose equation (21), we can derive a variational expression
for the eigenvalues k2. The variational expression is

(Ej, 2, E) (H,. %, E)

C(EL#E) (H )

k2= :
’ (H,, #E,)

We can establish the variational property of the above
expression about the exact solutions H,, and E, by
letting

H =H,_+0H E,=E,_+38E

and showing that the first variation of k2 is zero.>

Since (23) is a variational expression, we can apply the
Rayleigh—Ritz procedure to find the optimal solution. To
do this, we let

(24)

~ N
H:s= Z bmHms’

m=1

N

ES= Z anEns (25)
n=1

We next substitute (25) into (23) and require that the first

variations of (23) with respect to the a,’s and b,’s vanish.

We find that the optimal solution is given by the solution

of the following matrix equations:

|L.+kB|-a=0 (26a)
[T+ k2] B=0 (26b)
where
L) =(H,.%E,) (27a)
B|,,=(H,,. 3 E,). (27b)

In the above, L, and B are also known as the matrix
representations [21]° of the operators %, and %. From the
definition of transpose operators,

<H lg&'.ErIY> = <E gea‘Hms>

ms? ns?>

= <Ens7 - gh(ﬁt? (:t)~Hms>

(28)

or

we see that

Ti=-1I,

(29)
where _]_,h is the matrix representation of the operator &,.
Since B'= — B, (26b) can be rewritten as*

|Z,+k2B]-5=0. (30)

Equations (26a) and (30) can also be directly obtained
from (9) and (13) by the application of the method of

276 show that the first varation in k2 vamshes, it 1s easiest to
cross-multiply out (23) first.
3In quantum mechanics, a matrix representation is defined with the
mner product (4%, B).
Note that the definitions of transpose operators and symmetric opera-
tors are very similar to the definitions of transpose matrices and symmet-
ric matrices.
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weighted residuals or the Petrov—Galerkin method [22]
(also known as the method of moments [23]). In solving (9)
using this method, for example, we will use E, s as expan-
sion functions and H,’s as weighting functions. Intu-
itively. for fast convergence, we would want the E, s to
approximate E, well, while we would want the H, s to
approximate the transpose solution, H_, well. When we
choose H,,  and E, to be the same basis set, the method
is commonly known as Galerkin’s method. When the basis
functions are finite domain basis functions, the method is
also known as the finite element method.

When the same basis set is used for H,, and E,, viz.,
using the Galerkin’s method, our formulation here is
equivalent to the E, method where the testing field is also
E, or to the H, method where the testing field is also H,.

Since the eigenequation (30) is the transpose of the
eigenequation (26a), we need only solve one of them for
the eigenvalues, since they share the same eigenvalues.’
Furthermore, we can prove that for a, and BJ correspond-
ing to the ith and jth eigenvalues, respectively, BJ ‘B-d,=
D35, . Hence, once all the a,’s are found, we can find the
bj’s easily. In addition, since Ze is not a symmetric matrix
and is non-Hermitian in general (a consequence of non-
symmetric and non-self-adjoint operator), k? can be com-
plex. This corresponds to the complex modes of the struc-
ture which are not due to losses. The existence of these
complex modes is a direct consequence of the non-self-
adjoint natures of (9) and (13). A similar variational prin-
ciple can be derived using { A*, B) type inner products.

V. NATURAL BounDARY CONDITIONS

In the previous derivation, we have assumed C to be a
PEC or a PMC. Under such an assumption, the line
integral terms in (12) and (15) vanish. In choosing the
basis set for E, and H,, we have to ensure that the PEC or
PMC boundary conditions are satisfied or that the fields
vanish on C. Boundary conditions that are imposed by
choosing the basis set are known as the essential boundary
conditions (also known as forced or principal boundary
conditions). However, it is sometimes desirable that the
boundary conditions be a natural result of the optimal
solution of a variational expression. These boundary con-
ditions are known as the natural boundary conditions [18],
[22]. We show next how such a variational expression can
be derived, in which the boundary conditions are the
natural result of the variational expression.

We can rewrite (12) with 4, = Iis as

<I'iS’ ge’E.>> = <H~A" D?eo.ES>

+ / dlﬁ “:J‘ts Hsyzzf.vr X ES
C

—f dIZ-Ax Hi, v, é-E,  (31)
C

where (H,, #2-E,) is used to denote terms in (12) involv-
ing only integrals over S. Similarly, we can rewrite (15)

3This follows from det(ie + kff?) = det(i’e + k:ll:?’) =0.
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with C,= E_ as
<Es7 yh.ﬁs> = <Es’ gho‘lis>

+ f dif-é Ex 55, x H
C by s

- | dif-AXEy v pi'-H, (32
C
where (E,, #?-H ) is used to denote terms in (15) involv-
ing only integrals over S. If we have an impedance bound-
ary condition on C, the line integral terms in (31) and (32)
need not necessarily vanish. To impose the impedance
boundary conditions, we can assume that

H,=-YZ? AXE, (33a)

E=Z7%nxH, (33b)
for the original and transpose problems, respectively. After
some manipulations, it is clear that the expression

<Iis’ %O'Es) - <Iis’ a"?e.Es>

k2= :
‘ <Hs’g.ES>

is the required variational expression [18]. In the above, we
define

(34)

(H,, 3%:E)=io [ dif-i - HY,2 A XE,
C

—io [ din-é EZz-AxH,. (35)
C

The functional is chosen judiciously so that symmetric
boundary conditions will ensue for the actual and trans-
pose problems, as we shall see later.

Taking the first variation of (34) with respect to the
exact solution, we have

<6HS’ gEO.ES€> + <Iise’ °?€. 8ES> - <8HS’ age.ES€>
- <'H~S€’ a’%' 3EA‘> + kZ2€<8HS’ g.ES€>
+k2Z(H,,, B-3E)+ 8kXH,,, BE,)=0. (36)
For arbitrary variations of 8E, and 8H,, we find that the
condition for 8k? to vanish is that

<E;HY’ "?EO.ESC> - <8HS7 age.Ese> + k228<8HS7 '@.ES€> = 0

(37a)
<Iise’ °?€o. 8ES> - <Ijse? 8’%. 8ES> + k?e(‘ﬁse’ ‘@. 8ES> = O'
(37b)
Using (31) for the definition of (8H,, £°-E,.), and (35)

for the definition of (8H,, .%,-E_,), we see that (37a) is
satisfied only if

<8HS’ e?(,"E'SL’> + k22€<8HS7 g.ES€> = 0 (38)

and

jfcdm 'ﬁi'sHsszf'Vs X E, — fcdlé‘-ﬁ X 3HSKszx'€:s'Es
= m/ dif-i. SH,Y,5-A X E,
C

—io [ dIh-& E,Z,27 % 8H,. (39)
C
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For arbitrary 6H,, (38) and (39) imply that
L E +k%BE, =0 (40a)
and
v,. 2V, XE =—iwY,7-AXE,
K, Ve B =—iwZhé-E, (40b)

on C. Equation (40b) is equivalent to
w

H,=—Y,2 AXE, E,=+

ZA-D,. (41)

Similarly, from (37b), by noting that (H,, %% 8E,) =
(8E,,— Z?-H,», and using its definition from (32), we

conclude that

%,H,,+ k2% H,=0 (422)
and
K,V XH =—iwZ 2 AxH
v il = —iYa el (42)
on C. Equation (42b) is equivalent to
E=72AxH ﬁzzkiysﬁ-ﬁs. (43)

z

Note that in (41) and (43), auxiliary boundary conditions
for E, and H, have surfaced in addition to those assumed
in (33a) and (33b). With these natural boundary condi-
tions, to obtain a PEC at C, we let Z =0 and Z~S =0.
Furthermore, if we were to assume an essential boundary
condition for PEC where 7 X E, or A-jii-H, is zero, then
the first term in (35) would vanish. For a PEC, the natural
boundary condition dictates that Z, =0, and the second
term in (35) vanishes. In such a case, we can remove the
functional (35) from (34) completely. Similar statements
can be made for a PMC at C.

With the variational expression (34) available, we can
apply the Rayleigh—Ritz procedure to find the optimal
solution as in Section IV. The resultant matrix equations
are

L.—9dL,+k2B|-a=o0 (44a)
[ ]

|Z- oLt + k28] -B=0. (44b)

The resultant equations are similar to (26a) and (26b)
except for the L, term, which is defined as

|oL.],,=x

ms?>

0% E,>. (45)
If finite domain basis functions are used in (25), since (45)
involves line integrals on C, only the elements touching the
boundary C are involved in calculating dL,. As before, we
need only solve one of the two equations (44a) and (44b).
Furthermore, once a,’s are found, the Bj’s can be found
easily.
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VI. IMPLEMENTATION AND NUMERICAL RESULTS

We have implemented the above theory for an inhomo-
geneous anisotropic dielectric waveguide. Without loss of
generality, we let

E N
Es= E; _n2=:1 n(x’ y) &n
H N
¥ m=1

where f:,,(x, y) is a 2X2 matrix, and &, and B, are 2x1
column vectors. In general, f, need not be diagonal. For
simplicity, we have assumed

(f,,(x,y) 0 )
0 fu(x.y) ]

The choice of f,(x,y) is such that it should be good
enough to approximate the x and y components of the
electric and magnetic fields. With the above choice of basis
functions,

(47)

(X, y) =

ﬁe] —_— o Lo fo) (48a)
[129] = Fo BL,) (48b)
are 2 X2 submatrices. More specifically,
Z],.=- fS dS2V, X [, 9 i,
+ LdSz“-vs X fae, Ve fon
—wszde-(Es-ﬁ,)x(ﬁ’s-fm) (492)
[E]mﬁdef:m-fXﬁ- (49b)
S

A detailed analysis of (49) is given in [24].

We have chosen f,(x,y) to be first-order elements.
They correspond to interpolating the three points of a
triangle with a plane. They can also be thought of as
pyramidal functions with a hexagonal base and six plane
surfaces. The general mesh we use for the computation is
shown in Fig. 2. This mesh is good for an arbitrarily
shaped waveguide. If the waveguide is symmetric with
respect to the vertical and horizontal midplanes through
the waveguide, the mesh can be reduced to a quarter of its
original size by imposing the necessary magnetic and elec-
tric wall boundary conditions at the midplanes. We found
that results similar to those before are obtained by reduc-
ing the mesh to one quarter of its original size. The
reduction in mesh size is done by a number of workers to
reduce storage requirement, but this makes the program
more restrictive. For a guided mode, we found that the
boundary conditions on the outermost wall were not im-
portant because the field was, in general, exponentially
small there.

\

Fig. 2. A sample finite element mesh.

n? = 1.0,n = 1.05,a/b = 1.0

09

0.8 -

0.7

0.6 <

Q‘ 0.5
0.4 -
0.3
024
0.1
° o8 l.'2 116 -2'. 2’4 ZIB 312 3‘6 4
g
» B, Efy +EL,E} o BL,Ef 2 B, B, x Goel: EY,, Bf
Fig. 3. Low-contrast case and the comparison with Goell’s result.

We have solved the eigenequation (26a) with a standard
eigenvalue solver from IMSL (International Mathematical
Subroutine Library). We have compared the results gener-
ated by our code with previous results and found good
agreement for both the isotropic and anisotropic cases
(Figs. 3-5). We did not observe the occurrence of spurious
modes.

In the following plots

2 2 2
B=3’3[(ﬁ) _1} and P=—————(kZ/k°)2 L
Ao [\ ko (kl /k 0) -1

The case considered is a rectangular dielectric waveguide
with aspect ratio a/b. The simulations are done using
17%x17 pyramidal functions for each E, and E, corre-
sponding to 578 unknowns. It took about 30 seconds on a
CRAY-XMP /48 to solve once and for all the eigenvalues
of the matrix. The first six modes are plotted, and the

lowest two modes are compared with previous results.
In Fig. 3, we compare our fundamental mode with the

solution of Goell [25], showing excellent agreement. Goell’s
solution is derived from cylindrical harmonic analysis, and
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0.0
s d n? =1.0,n =2.25,a/b = 1.0
07 4
0.6 4
0.5 4
0.4 o
0.3 ~
0.2

01+

0.8 1.2 1.6 2 2.4 28 32 36 4

Y Y . By
* B, Ef x By ® EY 4 Ej ¥ Goel: Ey), Bfy

Fig. 4. High-contrast case and the comparison with Goell’s result.

2.3
228 J

2.26 -

224 4 n§ = 2.05,n2 = n2 = 2.31,n2 = 2.19

222 -

2.2 4

218 -

& 2.18 -
Tz
212
2.1
2.08

208 T T T T T T Y T

H 2 3 4 5 6 7 o 9 10
g
=B + B, ° B3, s EY * Hayata: Ef,

Fig. 5. Anisotropic case which is uniaxial, and the comparison with
Hayata’s result.

has been standard for comparison in the literature. How-
ever, a finite element solution is more versatile than a
cylindrical harmonic analysis.

In Fig. 4, we display the dispersion diagram for the
high-contrast case. The fundamental mode again agrees
very well with Goell’s result.

In Fig. 5, we display the dispersion curve for the
anisotropic case, and compare the result with that of
Hayata ef al. [12]. We have rescaled 8 and P to agree with
those defined by Hayata. The agreement is very good.

VIL

We have developed a variational formulation for
anisotropic dielectric waveguides with reflection symmetry
using E, or H, components only. We cast our variational
formulation via the use of transpose operators and shed a
different light on the formulation. We show that the E
and H_ formulations are completely equivalent to each
other; hence, there is no reason to prefer one over the
other. OQur formulation also allows us to easily study the
effect of loss and frequency dispersion. We show how the
natural boundary conditions can be included in the formu-

CONCLUSIONS
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lation. The results of our numerical implementation also
compare favorably with these results of previous formula-
tions.
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