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Abstract — We derive a variational formulation for anisotropic, dielectic

waveguides using only the ( EX, EP) or only the (Hz, Hy ) components of the

electromagnetic field. We show that the ( IIx, EY) formulation is completely

equivalent to the (H,, Hy ) fornmfation. In fact, they are the transpose

problems of each other. Given the variational formulation, one can derive

the finite element sohrtion quite easily. We also show how to derive a

variatiormf expression where the natural boundary conditions are incorpo-

rated as an optimal solution of the variationrd expression. We illustrate our

theory with a simple implementation of a finite elemerrt solution. Our

solutions agree with previous results, and there is no occurrence of

spurious modes. Furthermore, our formulation allows the easy inclusion of

loss and frequency dispersion in the ~ and ~.

I. INTRODUCTION

T

lHERE HAVE been numerous papers published on

the analysis of dielectric waveguides due to their

growing importance in integrated optics and millimeter

waves. Because of the complexity of the structure, numeri-

cal methods [1]–[15], such as the finite element method,

are popular for solving this class of problems. In the finite

element method, there is always an associated variational

expression. Many different variational formulations have

been introduced to derive the guided modes of a dielectric

waveguide. Some of these formulations produce spurious

mod es [1]–[6], [8], which are not the physical modes of the

dielectric waveguide. The spurious modes are usually ob-

served with the (E=, Hz) formulation where only the z

components of the electromagnetic field are kept as un-

knowns [1], [2], [6], [8], or they are observed in a formula-

tion where the v “H = O condition is not imposed [4], [5].
Recently, sever~ papers have been published in which

the (HX, HY) formulation is advocated [11]–[13]. The au-

thors showed that with the use of such a formulation, the

spurious modes disappear. Even more recently, some

workers have suggested using both (Ex, Ey) and (HX, HY)

formulations to remove the spurious modes [14].

In all of the above formulations, the finite element

method was used to solve the pertinent equations. Hence,

one important consideration is the minimization of re-

quired computer memory. Therefore, it is most expedient
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to formulate the problem with a minimum number of the

components of the electromagnetic fields. Some formula-

tions use three components of the l% field, and the un-

knowns for all three components of the H field have to be

stored [4], [5], [12]. In other formulations, the unknowns

for all four components of the fields, (HX, H,) and

(EX, E,), have to be stored [14].

In this paper, we will use either the (Ex, E,) only or the

( Hx, Hy) only for the formulation of anisotropic, inhomo-

geneous waveguides. Contrary to popular belief, we show

that the (Ex, E.v) formulation is as good as the (HX, Hy)

formulation. By properly defining the differential equa-

tions and the transpose problems [16], we show that the

( Ex, Ey) and ( Hx, H,) formulations are completely equiva-

lent to each other. NJ [13] suggested that the (Jf?X,EY)

formulation was inherently less accurate than the (HX, H})

formulation. However, it can be shown that for the

isotropic case, if the same basis set is used for the expan-

sion functions and the testing functions, our (1[., Hy)

formulation is similar to Su’s; hence, there is no real.$on to

prefer the (Hx, Hy ) formulation over the (~x, Ey) formula-

tion.

In all the formulations in which the spurious modes do

not occur, either the v. D = O or the v. B = O condition is

imposed. We believe that these conditions remove the

possible accumulation of fictitious charges in the finite

element approximation. These fictitious charges, which can

store energy, can give rise to extraneous guided modes.

We will first derive the pertinent equations involving

either the ( Ex, Ey ) or the ( Hx, H.v) for an anisotropic

waveguide with reflection symmetry [17]. Assuming that

the field has eik=’ dependence, our k: appears explicitly as

the desired eigenvalue in the eigenequation. As oppc~sed to

formulations in which k 2 or the frequency appears explic-

itly as the desired eigenvalue [1], [4], [6], [8], [1’2], our

formulation makes it possible to include loss and fre-

quency dispersion.

After having derived the differential equations, we de-

fine their transpose problems [16] appropriately. Then, we

derive the variational expression corresponding to the dif-

ferential equations. We also discuss how the natural

boundary conditions can be imposed in such a formula-
tion. Finally, we show the numerical implementation of

such a theory.
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Fig. 1. Anisotroplc, dielectric waveguide to be analyzed

H. DERIVATION OF THE DIFFERENTIAL EQUATIONS

In applying the finite element method, we have to first

derive a variational expression. Before we do that, we need

to derive the differential equation governing the field.

Once the differential equation is derived, we can derive the

variational expression quite easily once we identify the

transpose problem (e.g., see [16] and [18]). In order to

reduce the number of unknowns required, we reduce the

differential equation to an equation involving (EX, E})

alone for the E field. The differential equation governing

(HX, Ely) can be derived via the duality principle.

The electric field in an inhomogeneous, anisotropic

waveguide satisfies the vector wave equation

v X~-l.v XE(r)–ti2Z.E(r) =0. (1)

We will assume that

are functions of position and that p, and ;< are 2 X 2

tensors. In this manner, the geometry in Fig. 1 has reflec-

tion symmetry about the z axis; i.e., a mode propagating

in the + z direction is degenerate with a mode propagating

in the – z direction [17]. Equation (1) has three compo-

nents of the electric field. To reduce the number of electric

field components, we next proceed to separate the trans-

verse and longitudinal components of (l). We assume that

the field has e’~z’ dependence so that d/dz = ikz. Defining

v = v, + ;ikZ E= E,+fE= (3)

where the subscript s denotes a vector transverse to z, the

transverse components of (1) become

V, x VZZV, X E,+ ik,; X ;,.v, X 2EZ – ti%,. E,

–k:2x;,.;,.2x E,=0 (4)

where we have defined ~, = ~– 1. We can remove E, in (4)

using the v. D = O condition, from which we deduce that

v,. ;,. E,, i~zz
EZ=– — —v,.;,. E,. (5)

ikzczz kz

We have defined ~ = ~- 1 in the above. Consequently, (4)

can be reduced to an equation involving only E,, viz.,

v, x V=zv,x E, + 2X i,. i? XV, (KzzV,~$.E$)

–u2;,. E,–k::x;,-:x E, =0. (6)

The above is an eigenequation for k ~. The dependence

on kj implies that e * ‘kZZ modes are degenerate. This

would not have been possible without assuming the form

of ~ and ~ in (2). In (6), kj multiplies a rather compli-

cated expression. We can premultiply (6) by ~,. 2 X to

arrive at

~,.~ X V, X VZZV, X E, – 2 X VSK,ZV,. i~.Es

–LJ2; Y.2X;,E, +k:fx E,=O. (7)

Invoking the duality principle [18], we arrive at the equa-

tion for the transverse magnetic field:

;,.; X V, X Kzzv, X H, – ; X V, VZZV,.;,. H,

– o)2:,.~X ;,.H, + k;fx H,= O. (8)

Equations (7) and (8) are very dissimilar in appearance.

However, we shall show next that they are related via the

definition of transpose operators [16].

III. THE TRANSPOSE PROBLEMS

Equation (7) is a differential equation of the form

S?e.E,+k@. E,=O (9)

where &’e and .% are linear operators. Defining the inner

product (A,, ~,) =/S c&I,. B,, where S is the whole
cross-sectional area of the waveguide (see Fig. l(b)), the

transpose operatorl of JZ is an operator S?t such that

(A,, -$Z.E,) = (E,, ~’.A,). An operator is symmetric if
J.Z’r= JZ. The operator 9, in this case is not symmetric

because

(A,, JZ’e-E,) # (E,, L?,A,). (lo)

1We use the term transpose rather than aa)omt because, to be strictly
correct, the term adjcunt is used only when we define the inner product as

(A: , B,) [16]. [20].
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We can prove this readily because

(A,, J?=.E,) =~dSA,@xv, X VZ=V,XE,
s

/
– dSA,..? X V, K,,V,.;,.E,

s

J
– (J2 dSA,.~,.;x :~.E,.

s
(11)

Using integration by parts, or the appropriate vector

identities, the above “becomes

{A,, L?e.E,) = - j’ dS.2w, X E#,zV~.~,.z4,
s

J
+ dS2.V$ x AKz2V~.;,.E$

s

j(– @z sdS2. :, E,) X (~,.A’,]

J
+ dlfi .~~.A,vzZf-V, X E,

c,

J
- dlf.fi X A$KZzV,.;,E~. (12)

c

If we think of A, as a magnetic field, the last terms

involving line integrals vanish if we have a PEC (perfect

electric conductor) or PMC (~erfect magnetic conductor)
‘..

at C or if we assume C is at infinity. Then,

(A,, 2e.E3) = - / dS;.v, X E,vzzV~.j;.A~
s

J
+ dSf.v, x AKZZV,.;,. E,

-:~dsf(:sEs)x(7 sAs).

Clearly, (10) holds true from the above expression.

Similarly, (8) is of the form

L?hH, + k:93.H, = O.

By the same token,

(C., ~h”%) + (H,> 9,.C,).

In other words, ~h is not a symmetric operator.

specifically,

{C,, ~,”H,) = - ~%dS2”Vg x H,K,,v,.;~C,

J
+ dSt.V, X C,vz=V~.ji,.H~

-:~ds~(EsHs)x(::cs)

J
+ dl; -::- C, Kzz;.v, x H.

c

J
– dli?. fi X +ZZV,.;,.H,.

c

Again the line integrak vanish if we assume that (

(12a)

(13)

(14)

More

(15)

Cisa
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PEC or PMC and that C, is an electric field, or thi~t C is

at infinity. Then,,

J+ dS.$.v~ X C, VZZV$.;,.l(
s

Clearly, (14) holds true from the above expression.

In (12a) and (15a), Ye and &h are functions of ~ and

~. By comparing (12a) and (15a) and letting .4 = H. in

(12a) and C.= E, in (“15a), we notice that

Therefore, – %k(~’, ;’) is the transpose operator of

~,(~, ~). If the medium is reciprocal, then ~’= ~ and

<r = ~. In this case, – Yh is the transpose operator of S?’

from the same medium. However, in general, we have

In other words, the transpose of the operator – .%’, in

medium (~,;) is the operator &’~ in medium (~, ;~).

It is easy to show that the operator ~ in (9) and (13)

satisfies

(A,.$Z.E,) =(E~, -EZ.A). (18)

Therefore,

@i=–@. (19)

The above derivation establishes the transpose prc,blems

of (9) and (13), respectively. Given (9), its transpose prob-

lem exists, and can be associated with a physical problem.

Hence, given

the transpose problem is

J?et(~,;):E; +k;~a. E:=O. (21)

Using (17) and (19), the transpose problem is the same as

Hence, the transpose solution, E;, is H,, which [S the
transverse magnetic field solution of a medium with the

electromagnetic property of (~, if). From this point on-

ward, we use the tilde f - ) to denote that H. is the mag-

netic field solution with the medium ~f, it. If the medium is

reciprocal, ~ = ~ and it= ~, the transpose solution k just

the transverse magnetic field solution of the same medium,

that is, H, = H.. Similarly, we can establish the transpose
problem and the solution associated with (13). A similar

result could be obtained if we use (A*, B ) as our inner

products [16], [18], [20]. In this case, the term transpose

operators will be replaced by adjoint operators. Equations

(9) and (13) can be proved to be non-self-adjoint.



664 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL. 37, NO. 4, APRIL 1989

IV. VARIATIONAL PRINCIPLE

Given a nonsymmetric eigenequation (20) and its trans-

pose equation (21), we can derive a variational expression

for the eigenvalues k ~. The variational expression is

We can establish the variational proper~y of the above

expression about the exact solutions H,e and E~e by

letting

H,= H,, + 8H E,= E,e + SE (24)

and showing that the first variation of kj is zero.z

Since (23) is a variational expression, we can apply the

Rayleigh–Ritz procedure to find the optimal solution. To

do this, we let

N N

J!?, = ~ anEn, Ii, = ~ bmHm,. (25)
~=1 ??1=1

We next substitute (25) into (23) and require that the first

variations of (23) with respect to the a .’s and bin’s vanish.

We find that the optimal solution is given by the solution

of the following matrix equations:

[~e+k;~]. Z=O (26a)

where

[L]mn=(Iim, , .L?e.En,) (27a)

— —
In the above, ~, and ~ are also known as the matrix

representations [21] 3of the operators .47, and ~. From the

definition of transpose operators,

(Elm,,, JZe.Eny) = {En,, JZ’:.llm,)

=(En,, -%h(~,:’).Hm,) (28)

we see that

(29)
—

where Eh is the matrix representation Of the operator ~h.

Since ~’= – ~, (26b) can be rewritten as4

(30)

Equations (26a) and (30) can also be directly obtained

from (9) and (13) by the application of the method of

2To show that the first variation in k$ vamshes, it 1s easiest to

cross-multiply out (23 ) first.
3In quantum mechanics, a matrix representation is defined with the

m~er product (A’, I?).
Note that the definitions of transpose operators and symmetric opera-

tors are very similar to the definitions of transpose matrices and symmet-
ric matrices.

weighted residuals or the Petrov–Galerkin method [22]

(also known as the method of moments [23]). In solving (9)

using this method, for example, we will use En,’s as expan-

sion functions and Hm,’s as weighting functions. Intu-

itively, for fast convergence, we would want the Ens’s to
approximate E, well, while we would want the Hm,’s to

approximate the transpose solution. ~$, well. When we

choose Hm, and En, to be the same basis set, the method

is commonly known as Galerkin’s method. When the basis

functions are finite domain basis functions, the method is

also known as the finite element method.

When the same basis set is used for Hm, and E.,, viz.,

using the Galerkin’s method, our formulation here is

equivalent to the E, method where the testing field is also

Es or to the H, method where the testing field is also H,.

Since the eigenequation (30) is the transpose of the
eigenequation (26a), we need only solve one of them for

the eigenvalues, since they share the same eigenvalues. 5

Furthermore, we can prove that for ZiZand ~J correspond-—
ing to the i th and j th eigenvalues, respectively, bj. ~. ~, =

DJS,J. Hence, once all the ii, ‘S are found, we can find the

8J’s easily. In addition, since ~, is not a symmetric matrix

and is non-Hermitian in general (a consequence of non-

symmetric and non-self-adjoint operator), kj can be com-

plex. This corresponds to the complex modes of the struc-

ture which are not due to losses. The existence of these

complex modes is a direct consequence of the non-self-

adjoint natures of (9) and (13). A similar variational prin-

ciple can be derived using (A*, B,) type inner products.

V. NATURAL BOUNDARY CONDITIONS

In the previous derivation, we have assumed C to be a

PEC or a PMC. Under such an assumption, the line

integral terms in (12) and (15) vanish. In choosing the

basis set for E, and H,, we have to ensure that the PEC or

PMC boundary conditions are satisfied or that the fields

vanish on C. Boundary conditions that are imposed by

choosing the basis set are known as the essential boundary

conditions (also known as forced or principal boundary

conditions). However, it is sometimes desirable that the

boundary conditions be a natural result of the optimal

solution of a variational expression. These boundary con-

ditions are known as the natural boundary conditions [18],

[22]. We show next how such a variational expression can

be derived, in which the boundary conditions are the

natural result of the variational expression.

We can rewrite (12) with A, = H, as

(11,, JY=E,) = (H,, J?:. E,)

J
+ dlfi ‘@,. ti,Vzzi”V, X ~,

c

J- dl$. ij x F?,KZ=V,.:,.E, (31)
c

where (X,, Ye”. E,) is used to denote terms in (12) involv-

ing only integrals over S. Similarly, we can rewrite (15)

‘This follows from det ( ~, + k~~ ) = det ( Z, + k~B’ ) = O.
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with C, = E, as For arbitrary 8H,, (38) and (39) imply that

(J%, =$@,) = (E,, ~:.H,) &’,.E,, + k&Z?.E,e = O (40a)

J
+ dlfi. ;,.E,K,z2.v~ x H.

c
and

J– dl.?”i? X E#zzV,.~,.fi, (32)
c

whlere (E,, J?:. ~,) is used to denote terms in (15) involv-

ing only integrals over S. If we have an impedance bound-

an~ condition on C, the line integral terms in (31) and (32)

need not necessarily vanish. To impose the impedance

boundary conditions, we can assume that

Hz=– Y, f. fix E, (33a)

i,= 2,3. fi x H, (33b)

for the original and transpose problems, respectively. After

some manipulations, it is clear that the expression

K,=V,*i,. E$ = – iu~~i? .;,.E, (40b]

on C. Equation (40b) is equivalent to

Similarly, from (37b), by noting that (fi,e, ~~. 8E$) =

(13EJ, – JZ’~.~$.), and using its definition from (32), we
conclude that

J?h.H~, + k;~.4?.H,, = O (42a)

is the required variational expression [18]. In the above, we

define

The functional is chosen judiciously so that symmetric

boundary conditions will ensue for the actual and trans-

pose problems, as we shall see later.

Taking the first variation of (34) with respect to the

exact solution, we have

(~H,> ~;”E,.) + (@,, 2,. 6E,) - (8H,, 6W,.E,.)

- (H,., 6’9’. 8E~) + k;.(8H,, ~“E.,)

+ k:,(H,e, ~. 8E,) + ~k:(ti~e, ~ “EJ = 0. (36)

For arbitrary variations of 8E$ and 8HS, we find that the

condition for ~k~ to vanish is that

Note that in (41) and (43), auxiliary boundary conditions

for E= and fi= have surfaced in addition to those assumed

in (33a) and (33 b). With these natural boundary condi-

tions, to obtain a PEC at C, we let 2,= O and ~,= O.

Furthermore, if we were to assume an essential boundary

condition for PEC where f X E, or fl. ~,. H, is zero, then

the first term in (35) would vanish. For a PEC, the natural

boundary condition dictates that ~,= O, and the second

term in (35) vanishes. In such a case, we can remove the

functional (35) from (34) completely. Similar statements

can be made for a PMC at C.

With the variational expression (34) available, we can

apply the Rayleigh–Ritz procedure to find the optimal

solution as in Section IV. The resultant matrix ec~uations

Using (31) for the definition of (dH,, JP:.E,,), and (35)
[

—

for the definition of (8H,, 8E’,.E,,), we see that (37a) is 1Z;–az:+kji .Z=o. (44b)

satisfied only if The resultant equations are similar to (26a) and (26b)

(8H,, ~,.E.e) + k:,(6H,, Q7.E,=) = O (38)
except for the 8Z, term, which is defined as

ancl [aie]mn=( Hm~, 8&’e.En,). (45)

/ dlfi .~~. ISH,VZZ2.V, X E, - ~ all;. ii X 8H,KZZV,. ;,.E, If finite domain basis functions are used in (25), since (45)
c c involves line integrals on C, only the elemgnts touching the

J
= ia dli?. ~,.8H,Y,f.2 x E, boundary C are involved in calculating a~e. As before, we

c need onlv solve one of the two equations (44a) and (44b).

(39)
Furthermore, once ii,’s are found, the ~y’s can be found

easily.
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VI. IMPLEMENTATION AND NUMERICAL RESULTS

We have implemented the above theory for an inhomo-

geneous anisotropic dielectric waveguide. Without loss of

generality, we let

()

E
E,= ~x = gin(x>Y)”%

Y

()

Hx

‘s= Hy = ,ti:,im(x> Y)”L (46)

where ~.(x, y) is a 2 x 2 mat~ix, and ii. and ~. are 2 x 1

column vectors. In general, ~. need not be diagonal. For

simplicity, we have assumed

(fn(x, y) o
jJx, y) = o 1fn(x, y) ‘

(47)

The choice of ~.(x, y) is such that it should be good

enough to approximate the x and y components of the

electric and magnetic fields. With the above choice of basis

functions,

[L= (i+lin) (48a)

[;]mn=(im,a.;n) (48b)

are 2 X 2 submatrices, More specifically,

[%.=-L dSf.V, X f~vZZV,”fi:”f.

-ti2~dS2(i,i.)x(?.~.,) (@a)

[=])nn=/ds;mfxjn. (49b)
s

A detailed analysis of (49) is given in [24].

We have chosen ~.(x, y) to be first-order elements.
They correspond to interpolating the three points of a

triangle with a plane. They can also be thought of as

pyramidal functions with a hexagonal base and six plane

surfaces. The general mesh we use for the computation is

shown in Fig. 2. This mesh is good for an arbitrarily

shaped waveguide. If the waveguide is symmetric with
respect to the vertical and horizontal midplanes through

the waveguide, the mesh can be reduced to a quarter of its

original size by imposing the necessary magnetic and elec-

tric wall boundary conditions at the midplanes. We found

that results similar to those before are obtained by reduc-

ing the mesh to one quarter of its original size. The

reduction in mesh size is done by a number of workers to

reduce storage requirement, but this makes the program

more restrictive. For a guided mode, we found that the

boundary conditions on the outermost wall were not im-

portant because the field was, in general, exponentially

small there.

liiEl!
Fig. 2. A sample finite element mesh

09- n; = I.o, n; = 1.05,a/fJ= 1.0 I

O.B -

0.7-

0.6-

0.5-

0,4 -

0.3 -

02-

0.1 -

08 1.2 1.8 2 24 28 3.2 36 4

P
■ E;l ,E:l + E;2 , E;l 0 Ef2 , E.fl A E;2 , E;2 x Goek Efl, E~l

Fig. 3. Low-contrast case and the comparison with Goell’s result.

We have solved the eigenequation (26a) with a standard

eigenvalue solver from IMSL (International Mathematical

Subroutine Library). We have compared the results gener-

ated by our code with previous results and found good

agreement for both the isotropic and anisotropic cases

(Figs. 3-5). We did not observe the occurrence of spurious

modes.

In the following plots

[m2bk12i and ~= (k=/’kO)’-l
p=r ~ -1

0 0 (k,/ko)2-l “

The case considered is a rectangular dielectric waveguide

with aspect ratio a/b. The simulations are done using

17x 17 pyramidal functions for each Ex and EY, corre-

sponding to 578 unknowns. It took about 30 seconds on a

CRAY-XMP/48 to solve once and for all the eigenvalues

of the matrix. The first six modes are plotted, and the

lowest two modes are compared with previous results.

In Fig. 3, we compare our fundamental mode with the

solution of Goell [25], showing excellent agreement. Goell’s

solution is derived from cylindrical harmonic analysis, and
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n,

m

0.9

0.8- n; = l.O, n~ = 2.25, a/b = 1.0

07-

0.6-

0.s -

0.4-

0.3 -

0.2-

ol-

0
0.8 1.2 1.6 2 2.4 28 32 36 4

Fig. 4. High-contrast case and the comparison with Goell’s result.

2.3

z 28

2,26

224

2 Zz

2,2

218

%
2.16

214

2.12

z, 1

2.08

208

n? = 2.05, n~ = n: = 2.31,~: s 2.19 t

12345 678910

Fig. 5. Anisotropic case which is uniaxiaf, and the comparison with
Hayata’s resntt.

has been standard for comparison in the literature. How-

ever, a finite element solution is more versatile than a

cylindrical harmonic analysis.

l[n Fig. 4, we display the dispersion diagram for the

high-contrast case. The fundamental mode again agrees

very well with Goell’s result.

l[n Fig. 5, we display the dispersion curve for the

ani.sotropic case, and compare the result with that of

Ha,yata et al. [12]. We have resealed ~ and P to agree with

those defined by Hayata. The agreement is very good.

VII. CONCLUSIONS

We have developed a variational formulation for

ani sotropic dielectric waveguides with reflection symmetry

using E, or H, components only. We cast our variational

formulation via the use of transpose operators and shed a

different light on the formulation. We show that the E,
and H, formulations are completely equivalent to each

other; hence, there is no reason to prefer one over the

other. Our formulation also allows us to easily study the

effect of loss and frequency dispersion. We show how the

natural boundary conditions can be included in the formu-

lation. The results

compare favorably

tions.
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of our numerical implementation also

with these results of previous formula-
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